

1 / 16

Write fields can be imported directly into Beamfox Proximity using a text file with a .txt extension. This document explains the
format used to generate write fields and aligment markers in such a file.

A file consists of a number of statements separated by new lines. A statement can either define one or more write fields, the
global marks, or a single local mark. Each statement consists of the statement type command followed by a number of
arguments separated by comma:

COMMAND, argument_1, argument_2, ...

Spaces and empty lines in the file are ignored. At least one write field must be defined for the file to be valid.

The content in this section is not strictly necessary for understanding the basic functionality of the format, and can therefore be
skipped at the readers discretion. It can, however, provide valuable insights for users with more advanced use cases.

Before running proximity effect correction, Beamfox Proximity will first check for geometries that lie either fully or partially outside
of any write fields. Geometries that are partially outside are split at the edge of the write field, after which all geometries that lie
outside of any write fields are discarded.

During proximity effect correction, Beamfox Proximity will fracture all geometries based on dose, user settings, and existing
fractures. The resulting geometries are then assigned to write fields.

The geometries will be assigned to the first write field in which the geometry can be entirely contained. The first write field
depends on the writing order, which is determined by the order in the write field file. For arrays, the write fields are written one
row at a time. If a geometry cannot be fully contained within a single write field, the geometry will be split at edge of the first
write field. The two parts of the newly-split geometries are both considered new geometries, and go through the same process
again. This process continues until all geometries have been assigned to write fields.

Autofill fields capture and split geometries similarly to write fields.

For write fields with multi-pass enabled, a geometry will only be captured by the resulting effective write field. In other words, a
geometry will only be captured if it is placed within the area that is overlapped by all multi-pass passes.

It is possible to use write fields in Beamfox Proximity (virtual write fields) that are smaller than the actual write fields used by the
e-beam system (physical write fields). This can potentially improve the quality and fidelty of the exposure, as this ensures writing
will only occur in the central part of the physical write field, which reduces errors caused by defocus and astigmatism. The
physical write field size is assumed to be the largest write field size specified. The number of dots is read from the same
statement where the physical write field size is declared - all other number of dots declarations are ignored.

Geometries in the design that cross the interface between separate write fields are susceptible to stitching errors, caused by
small offsets being introduced when the e-beam system moves from one write field to the next. This effect can be minimized at
the expense of a slightly increased writing time by using multi-pass mode.

Beamfox Proximity

Write Field Import - TXT Format Specification

Introduction

For advanced users

Splitting of geometries into write fields

Virtual and machine write fields

Multi-pass mode

2 / 16

In multi-pass mode, geometries are written multiple times using a fraction of the dose with a slight offset each time. More
specifically, the geometries are written passes number of times with a dose of 1 / passes . The offset between each pass is
defined by a displacement distance of shift , and an angle of Φ0 + π*(2n + 1)/N relative to the x-axis, where n is the pass id
running from 0 to N - 1, Φ0 = rotation , and N = passes .

Note: Beamfox Proximity will display the effective write field instead of all the individual multi-pass write fields. This results in a
virtual write field that is smaller than the specified size.

A write field statement can either define a single write field or an array of write fields. The write field statement commands are
CHIP , MCHIP , ARRAY , MARRAY , SARRAY , and MSARRAY .

For arrays, the primary and secondary array vectors are used to define array direction. The primary array vector specifies
displacement between columns, and the secondary array vector specifies the displacement between rows. The primary and
secondary array vectors cannot be parallel.

Defines a single write field. The signature of the statement is:

CHIP , x , y , size , dots

Name Type Conditions Description
x real - The x-coordinate of the center of the write field.

y real - The y-coordinate of the center of the write field.

size real size > 0 The width of the write field in micrometers.

dots integer dots > 0 The number of dots along each axis of the write field.

Example:

CHIP, 259.9, 255, 500, 1000000

See example CHIP.txt for a full example.

Write Field Statements

CHIP

3 / 16

Defines a single multi-pass write field. The signature of the statement is:

MCHIP , x , y , size , dots , passes , shift , rotation

Name Type Conditions Description
x real - The x-coordinate of the center of the write field.

y real - The y-coordinate of the center of the write field.

size real size > 0 The width of the write field in micrometers.

dots integer dots > 0 The number of dots along each axis of the write field.

passes integer passes > 1 The number of write fields to use for multi-passing.

shift real shift > 0 The distance to displace each write field in micrometers.

rotation real - The offset angle of the displacement direction.

Example:

MCHIP, 259.9, 255, 500, 1000000, 3, 100, 0

See example MCHIP.txt for a full example.

Defines an array of write fields. The signature of the statement is:

ARRAY , columns , rows , x , y , size , dots , ax , ay , bx , by

Name Type Conditions Description
columns integer columns > 0 The number of columns in the array.

rows integer rows > 0 The number of rows in the array.

x real - The x-coordinate of the center of the first write field.

y real - The y-coordinate of the center of the first write field.

size real size > 0 The width of the write field in micrometers.

dots integer dots > 0 The number of dots along each axis of the write field.

ax real - The x-component of the primary array vector.

ay real - The y-component of the primary array vector.

bx real - The x-component of the secondary array vector.

by real - The y-component of the secondary array vector.

Example:

ARRAY, 2, 2, 259.9, 255, 500, 1000000, 200, 200, 0, 400

See example ARRAY.txt for a full example.

MCHIP

ARRAY

4 / 16

Defines an array of multi-pass write fields. The signature of the statement is:

MARRAY , columns , rows , x , y , size , dots , ax , ay , bx , by , passes , shift , rotation

Name Type Conditions Description
columns integer columns > 0 The number of columns in the array.

rows integer rows > 0 The number of rows in the array.

x real - The x-coordinate of the center of the first write field.

y real - The y-coordinate of the center of the first write field.

size real size > 0 The width of the write field in micrometers.

dots integer dots > 0 The number of dots along each axis of the write field.

ax real - The x-component of the primary array vector.

ay real - The y-component of the primary array vector.

bx real - The x-component of the secondary array vector.

by real - The y-component of the secondary array vector.

passes integer passes > 1 The number of write fields to use for multi-passing.

shift real shift > 0 The distance to displace each write field in micrometers.

rotation real - The offset angle of the displacement direction.

Example:

MARRAY, 2, 2, 259.9, 255, 500, 1000000, 200, 200, 0, 400, 3, 100, 0

See example MARRAY.txt for a full example.

Defines a grid of write fields where the write fields' edges touch, starting from the lower left to upper right. The signature of the
statement is:

SARRAY , columns , rows , x , y , size , dots

Name Type Conditions Description
columns integer columns > 0 The number of columns in the array.

rows integer rows > 0 The number of rows in the array.

x real - The x-coordinate of the center of the bottom left write field

y real - The y-coordinate of the center of the bottom left write field

size real size > 0 The width of the write field in micrometers.

dots integer dots > 0 The number of dots along each axis of the write field.

MARRAY

SARRAY

5 / 16

Example:

SARRAY, 2, 2, 259.9, 255, 500, 1000000

See example SARRAY.txt for a full example.

Defines a grid of multi-pass write fields where the edges of the effective write fields touch, starting from the lower left to upper
right. The signature of the statement is:

MSARRAY , columns , rows , x , y , size , dots , passes , shift , rotation

Name Type Conditions Description
columns integer columns > 0 The number of columns in the array.

rows integer rows > 0 The number of rows in the array.

x real - The x-coordinate of the center of the bottom left write field

y real - The y-coordinate of the center of the bottom left write field

size real size > 0 The width of the write field in micrometers.

dots integer dots > 0 The number of dots along each axis of the write field.

passes integer passes > 1 The number of write fields to use for multi-passing.

shift real shift > 0 The distance to displace each write field.

rotation real - The offset angle of the displacement direction.

Example:

MSARRAY, 2, 2, 259.9, 255, 500, 1000000, 3, 100, 0

See example MSARRAY.txt for a full example.

A global mark statement defines all the global markers of the chip.

Only one global mark statement is allowed per file.

A global mark statement can define 1-4 points.

MSARRAY

Global Mark Statements

6 / 16

Defines a single global mark. The signature of the statement is:

MARK1 , x , y

Name Type Conditions Description
x real - The x-coordinate of the mark.

y real - The y-coordinate of the mark.

Example:

MARK1, -40.1, -45

See example MARK1.txt for a full example.

Defines two global marks. The signature of the statement is:

MARK2 , x0 , y0 , x1 , y1

Name Type Conditions Description
x0 real - The x-coordinate of the first mark.

y0 real - The y-coordinate of the first mark.

x1 real - The x-coordinate of the second mark.

y1 real - The y-coordinate of the second mark.

Defines three global marks. The signature of the statement is:

MARK3 , x0 , y0 , x1 , y1 , x2 , y2

Name Type Conditions Description
x0 real - The x-coordinate of the first mark.

y0 real - The y-coordinate of the first mark.

x1 real - The x-coordinate of the second mark.

y1 real - The y-coordinate of the second mark.

x2 real - The x-coordinate of the third mark.

y2 real - The y-coordinate of the third mark.

MARK1

MARK2

MARK3

7 / 16

Defines four global marks. The signature of the statement is:

MARK3 , x0 , y0 , x1 , y1 , x2 , y2 , x3 , y3

Name Type Conditions Description
x0 real - The x-coordinate of the first mark.

y0 real - The y-coordinate of the first mark.

x1 real - The x-coordinate of the second mark.

y1 real - The y-coordinate of the second mark.

x2 real - The x-coordinate of the third mark.

y2 real - The y-coordinate of the third mark.

x3 real - The x-coordinate of the fourth mark.

y3 real - The y-coordinate of the fourth mark.

Example:

MARK4, -40.1, -45, -40.1, 555, 559.9, 555, 559.9, -45

See example MARK4.txt for a full example.

A local mark statement defines the location of a local marker.

One marker is defined per statement and there is no limit on the number of statements.

Defines a local marker. The signature of the statement is:

MARKL , x , y

Name Type Conditions Description
x real - The x-coordinate of the mark.

y real - The y-coordinate of the mark.

Example:

MARKL, 559.9, 555

See example MARKL.txt for a full example.

MARK4

Local Mark Statement

MARKL

8 / 16

Create a write field with center in (259.9, 255), width 500 micrometers, and 1 million dots.

CHIP, 259.9, 255, 500, 1000000

Examples

CHIP.txt

9 / 16

Create a multi-pass write field with center in (259.9, 255), width 500 micrometers, and 1 million dots. The write field will be
written with three passes, a displacement of 100 micrometers, and no rotation offset.

MCHIP, 259.9, 255, 500, 1000000, 3, 100, 0

MCHIP.txt

10 / 16

Create a 2 x 2 array of write fields, with the first write field's center in (259.9, 255). Each write field has a width of 500
micrometers and 1 million dots. Each column will be shifted by (200, 200) micrometers, and each row will be shifted by (0, 400)
micrometers.

ARRAY, 2, 2, 259.9, 255, 500, 1000000, 200, 200, 0, 400

ARRAY.txt

11 / 16

Create a 2 x 2 array of multi-pass write fields, with the first write field's center in (259.9, 255). Each write field has a width of 500
micrometers and 1 million dots. Each column will be shifted by (200, 200) micrometers, and each row will be shifted by (0, 400)
micrometers.. Each write field will be written with three passes, a displacement of 100 micrometers, and no rotation.

MARRAY, 2, 2, 259.9, 255, 500, 1000000, 200, 200, 0, 400, 3, 100, 0

MARRAY.txt

12 / 16

Create a 2 x 2 array of write fields in a grid, starting from a write field in the lower left corner with center in (259.9, 255). Each
write field has a width of 500 micrometers and 1 million dots.

SARRAY, 2, 2, 259.9, 255, 500, 1000000

SARRAY.txt

13 / 16

Create a 2 x 2 array of multi-pass write fields in a grid, starting from a write field in the lower left corner with center in (259.9,
255). Each write field has a width of 500 micrometers and 1 million dots. Each write field will be written with three passes, a
displacement of 100 micrometers, and no rotation.

MSARRAY, 2, 2, 259.9, 255, 500, 1000000, 3, 100, 0

MSARRAY.txt

14 / 16

Define a single global mark with coordinates (-40.1, -45).

CHIP, 259.9, 255, 500, 1000000
MARK1, -40.1, -45

MARK1.txt

15 / 16

Define four global marks with coordinates of (-40.1, -45), (-40.1, 555), (555.9, 555) and (559.9, -45), respectively.

CHIP, 259.9, 255, 500, 1000000
MARK4, -40.1, -45, -40.1, 555, 559.9, 555, 559.9, -45

MARK4.txt

16 / 16

Define two local markers with coordinates (-40.1, -45) and (559.9, 555), respectively, using two separate local mark statements.

CHIP, 259.9, 255, 500, 1000000
MARKL, -40.1, -45
MARKL, 559.9, 555

MARKL.txt

