

1 / 30

Write fields can be imported directly into Beamfox Proximity using a YAML file with a .yaml extension. This document explains
the format used to generate write fields and aligment markers in such a file.

At its core, files written in YAML primarily consist of key-value pairs, which in this documentation will be referred to as
statements. Statements in YAML files contain an indentifier (the key) and the associated value, separated by a colon and space.
Statements are separated by new lines. Some example statements are:

company-name: "Beamfox Technologies"
pi: 3.14159
is-it-friday: true

In YAML, indentation is used to denote structure/nesting. YAML does not allow the use of tabs, and instead, spaces are used.
There is no requirement to the number of spaces used to indent, as long as it is consistent throughout the document. In the
example below, some properties of an animal is defined:

animal:
 type: "Fox"
 legs: 4
 has-tail: true

Here, the statements type , legs , and has-tail "belong" to the animal statement due to their indentation. YAML
supports values of primitive datatypes (integers, strings, etc.), but also more complex data structure objects. Such objects can in
themselves be understood as collections of statements. In the example above, animal does not take a primitive datatype
(e.g., an integer), but instead takes a data object that consists of the statements type , legs , has-tail , and possibly
more. Some statements may be required or optional, depending on the type of object or other factors such as the inclusion of
other statements.

YAML also supports lists, which are defined using hyphens, where a hyphen indicates a new element in the list. Expanding on
the previous example:

animal:
 type: "Fox"
 legs: 4
 has-tail: true
 diet:
 - "Rodents"
 - "Birds"
 - "Berries"
 - "Fruits"

This list with four elements is contained within the diet statement, which itself is contained within the animal statement.

Beamfox Proximity

Write Field Import - YAML Format Specification

Introduction

YAML Basics

2 / 30

YAML statement keys are case sensitive, while statement values that are strings, such as the values of type and the list
members of diet , are not.

For more information about the YAML language, see https://en.wikipedia.org/wiki/YAML.

To create write fields, the YAML file should contain a combination of global statements, WriteField statements, and others. The
statement fields , detailed further below, contains a list of WriteField objects. New write fields (or write field lattices) can be
created by adding WriteField objects to this list, which in YAML is done with hyphens. For example, a single write field of width
500 micrometers and 1 million dots, with center in (250, 250), can be created with:

size: 500
dots: 1000000
fields:
 - origin:
 x: 250
 y: 250

The origin statement is a required statement of the WriteField object and specifies the center coordinates of the write field.
Note, that the x and y statements relate to the origin statement, and must therefore be nested within this statement.

Another write field with center in (750, 750) can be added by adding another WriteField object to the list:

size: 500
dots: 1000000
fields:
 - origin:
 x: 250
 y: 250
 - origin:
 x: 750
 y: 750

We can add further properties to each write field by adding further statements supported in the WriteField object. Expanding on
the previous example, the size of the first write field size is here changed to 300 micrometers, and the pitch (beam step size) is
changed to 2 in the second write field:

size: 500
dots: 1000000
fields:
 - origin:
 x: 250
 y: 250
 size: 300
 - origin:
 x: 750
 y: 750
 pitch: 2

Note that the indentation of these added statements must match the indentation level of the origin statement, as they are all
WriteField statements that refer to the same WriteField object.

Creating write fields

https://en.wikipedia.org/wiki/YAML

3 / 30

The YAML write field file is designed to be universal, and therefore independent of different e-beam systems, which may have
different settings or feature sets. When loading a write field file into the Beamfox Proximity application and running proximity
effect correction, the application will ensure that the specified write fields and their properties are compatible with the selected
output file format. Therefore, if the YAML file contains statements and/or statement values that are not compatible with the
selected output file format, these will be ignored or converted as best possible, or an error is produced.

The content in this section is not strictly necessary for understanding the basic functionality of the format, and can therefore be
skipped at the readers discretion. It can, however, provide valuable insights for users with more advanced use cases.

It is possible to use write fields in Beamfox Proximity (virtual write fields) that are smaller than the actual write fields used by the
e-beam system (physical write fields). This can potentially improve the quality and fidelty of the exposure, as this ensures writing
will only occur in the central part of the physical write field, which reduces errors caused by defocus and astigmatism. The
physical write field size is specified using the global size statement. The virtual write field size is specified using the size
statement for individual WriteField objects.

Geometries in the design that cross the interface between separate write fields are susceptible to stitching errors, caused by
small offsets being introduced when the e-beam system moves from one write field to the next. This effect can be minimized at
the expense of a slightly increased writing time by using multi-pass mode.

In multi-pass mode, geometries are written multiple times using a fraction of the dose with a slight offset each time. More
specifically, the geometries are written passes number of times with a dose of 1 / passes . The offset between each pass is
defined by a displacement distance of shift , and an angle of Φ0 + π*(2n + 1)/N relative to the x-axis, where n is the pass id
running from 0 to N - 1, Φ0 = rotation , and N = passes .

Note: Beamfox Proximity will display the effective write field instead of all the individual multi-pass write fields. This results in a
virtual write field that is smaller than the specified size.

E-beam system compability

For advanced users

Virtual and physical write fields

Multi-pass mode

4 / 30

Before running proximity effect correction, Beamfox Proximity will first check for geometries that lie either fully or partially outside
of any write fields. Geometries that are partially outside are split at the edge of the write field, after which all geometries that lie
outside of any write fields are discarded.

During proximity effect correction, Beamfox Proximity will fracture all geometries based on dose, user settings, and existing
fractures. The resulting geometries are then assigned to write fields.

The geometries will be assigned to the first write field in which the geometry can be entirely contained. The first write field
depends on the writing order, which is determined by the order in the YAML file. For lattices, the order is defined by
write_mode . If a geometry cannot be fully contained within a single write field, the geometry will be split at edge of the first

write field. The two parts of the newly-split geometries are both considered new geometries, and go through the same process
again. This process continues until all geometries have been assigned to write fields.

Autofill fields capture and split geometries similarly to write fields.

For write fields with multi-pass enabled, a geometry will only be captured by the resulting effective write field. In other words, a
geometry will only be captured if it is placed within the area that is overlapped by all multi-pass passes.

Exposure errors can potentially be introduced when geometries are split between write fields. This effect can be minimized by
introducing an overlap between write fields in a lattice, specified as a fraction of the write field size . This ensures that
more geometries are completely contained within write fields and do not need to be split, at the cost of adding more write fields.

Global statements are statements that are specified at the top level of the file. In other words, they are statements without
indentation in the file. There are 4 overall types of global statements:

1. E-beam system setting statements. These are used to configure the e-beam system, and include the size and dots
statements.

2. Write field value statements. These statements change the default properties of the write fields. If these values are not
specified, the default values specified in this documentation are used. These statements can also be applied to individual
write fields and write field lattices. Such statements include pitch , multipass , overlap , write_mode , and
origin_mode .

3. Fields statement. Write fields are defined by adding elements to the fields statement.
4. Alignment marks. These statements describe the location of all global and local markers. This includes the marks and

local_marks fields.

For statements that take either a scalar value or a point-like value, if a scalar value is provided, the value is converted to a point-
like value with the same values for both x and y.

Splitting of geometries into write fields

Global statements

5 / 30

Name Requirement Value
type Conditions Default Description

size Required
real or

RealPoint
size > 0 -

The physical size of the write field in
micrometers. All sizes of subsequently
defined write fields must not be larger

than this value. size must be a valid
option in the e-beam system to be used.

dots Required
integer or

IntegerPoint
dots > 0 -

The number of dots for the write fields.
dots must be a valid option in the e-

beam system to be used.

pitch Optional
integer or

Pitch
pitch > 0 1

The default pitch for writing. This may be
overridden for individual WriteField

objects.

multipass Optional Multipass - disabled

The default multi-pass mode. This may be
overwritten for individual WriteField

objects. If not specified, multipass mode
will be disabled.

overlap Optional real
0 <=

overlap < 1
0

The default overlap for write field lattices.
This may be overwritten for invidual

WriteField objects.

write_mode Optional WriteMode - WriteMode::default
The default write mode for lattices and
subfields. This may be overwritten for

individual WriteField objects.

origin_mode Optional OriginMode - OriginMode::default
The default origin mode for lattices. This

may be overwritten for individual
WriteField objects.

fields Optional
list of

WriteField
- empty

A list of WriteField objects each
containing write fields or write field

lattices. Write fields will be exported in the
order of this list.

marks Optional
list of

RealPoint
- empty

A list of the positions of all the global
markers.

local_marks Optional
list of

RealPoint
- empty

A list of the positions of all the local
markers.

When loading a YAML write field file into the Beamfox Proximity application, the values specified in the file will overwrite the
values set within the application.

See examples Marks.yaml, LocalMarks.yaml, and FullExample.yaml.

Global statements will in the following be referred to as global.statementName.

The global.fields statement takes a list of WriteField objects, each of which describes a single write field or a lattice of
write fields. If it is supplied, the autofill statement is used to create an autofill field that automatically places write fields
within a given region.

Statements

WriteField

6 / 30

Several of these statements can be used to overwrite the default values defined by global statements for the individual
WriteField object.

Any WriteField object is technically a lattice of write fields, with the columns and rows specifying the number of columns
and rows in the lattice. A single write field is a special case where both columns and rows are set to 1, or are both not
given. By default, the lattice is arranged so that the write fields' edges touch. If the overlap statement is supplied, write fields
in the lattice are arranged so that they overlap by the specified amount. Alternatively, the lattice vectors lattice_vector_a
and lattice_vector_b can be given to specify the exact displacement between write fields in the lattice, where
lattice_vector_a specifies the displacement between columns, and lattice_vector_b specifies the displacement

between rows. It is recommended to use the overlap statement for most use cases, and only specify the lattice vectors for
advanced use cases. Providing both the overlap statement and the lattice vector statements results in an error.

Name Requirement Value
type Conditions Default Description

autofill Optional AutoFill - disabled

If supplied, then creates a
region to automatically place

write fields. The AutoFill object
then describes the information

of the automatically filled
region.

origin Required* Origin - -
The origin of the write field

lattice/single write field.

columns Optional* integer columns > 0 1
The number of columns in the

lattice. Do not supply for a
single write field.

rows Optional* integer rows > 0 1
The number of rows in the

lattice. Do not supply to get a
single write field.

lattice_vector_a Optional* RealPoint ** *** The primary lattice vector.

lattice_vector_b Optional* RealPoint ** *** The secondary lattice vector.

size Optional
real or

RealPoint
0 < size <=
global.size

global.size The size of the write field(s).

pitch Optional
integer or

Pitch
pitch > 0 global.pitch The pitch for writing.

multipass Optional
false or

Multipass
- global.multipass

Enables multi-pass mode. If
false, or not supplied, then
multi-pass is disabled. The

Multipass object then describes
the multi-pass conditions.

overlap Optional real
0 <=

overlap < 1
global.overlap

The overlap of the write fields in
the lattice.

write_mode Optional WriteMode - global.write_mode
The write mode for the lattice

and subfields for all write fields.

* Must not be supplied when autofill is enabled.
** lattice_vector_a and lattice_vector_b must not be parallel.
*** The lattice vectors default to vectors that ensure that specified overlap is fulfilled.

See examples FieldSingle.yaml, FieldDouble.yaml, FieldArray.yaml, FieldVectors.yaml, and FieldOverlap.yaml.

Statements

7 / 30

An autofill field describes a region in which the Beamfox Proximity application should automatically place write fields. Autofill
fields capture geometries similarly to write fields, and after all geometries have been assigned, the autofill field is subsequently
split into a write field lattice that consists of the smallest number of write fields that can cover the autofill field, respecting the
specified values.

Autofill fields have no upper limit on their size, and can thus be larger than the physical write field size .

The AutoFill object describes the region covered by the autofill field, as well as the origin properties of the resulting write field
lattice.

Geometries that lie outside of the AutoFill Regions and are not caputered by other write fields, will in all cases be discarded,
even if the resulting write field lattice could contain them. When setting origin.mode.lattice to "LowerLeft", the origin should be
placed at or before the lower left corner of the AutoFill Region. If the origin of the lattice is placed within the AutoFill Region,
some geometries may be discarded.

Autofill areas are shown in the Beamfox Proximity application with a green tint to distinguish them from write fields.

Name Requirement Value
type Conditions Default Description

origin Optional Origin - disabled

The origin of the resulting lattice. This can be used to force
the center or lower left side of the lattice to be at a specific

location. If not supplied, the lattice will center on the contained
geometries.

region Optional Region - disabled
The region from which geometries can be captured. If not

supplied, then the entire plane is used as the region.

See examples AutofillDefault.yaml, AutofillRegion.yaml, and AutofillOrigin.yaml.

An Origin object is a point in the plane with real coordinates as well as an OriginMode that describes what part of the write field
or write field lattice is located at that position.

Name Requirement Value
type Conditions Default Description

x Required real - - The x-coordinate of the origin.

y Required real - - The y-coordiante of the origin.

mode Optional OriginMode - global.origin_mode
The location within the write field lattice the

origin point coordinates correspond to.

See example Origin.

AutoFill

Statements

Origin

Statements

8 / 30

A Region object describes a rectangle in the plane.

Name Requirement Value type Conditions Default Description
size Required real or RealPoint size > 0 - The size of the region.

origin Required RealPoint - -
The point in the plane where the origin is

located.

mode Optional
"LowerLeft" or

"Center"
- "LowerLeft"

What point in the region the origin point
refers to.

See example Region.

A RealPoint object describes a point in the plane with real coordinates.

Name Requirement Value type Conditions Default Description
x Required real - - The x-coordinate of the point.

y Required real - - The y-coordiante of the point.

See example RealPoint.

An IntegerPoint object describes a point in the plane with integer coordinates.

Name Requirement Value type Conditions Default Description
x Required integer - - The x-coordinate of the point.

y Required integer - - The y-coordinate of the point.

See example IntegerPoint.

Region

Statements

RealPoint

Statements

IntegerPoint

Statements

9 / 30

A Pitch object describes the pitch (beam step size) used for writing. The pitch (beam step size) is the stride, or number of steps,
between exposed dots. As an example, if the distance between dots is 0.5 nanometers, a specified pitch of 10 means that only
every tenth dot is exposed, and the physical pitch becomes 5 nanometers. Note that scan and feed do not always correspond to
the x and y (or, horizontal and vertical) directions, as this depends on the e-beam system and the geometry to write.

Name Requirement Value type Conditions Default Description
scan Required integer scan > 0 - The pitch when scanning the geometry.

feed Required integer feed > 0 - The pitch when line feeding.

See example Pitch.

The concept of multi-pass is detailed further up in this document, under For advanced users - Multi-pass mode.

Multi-pass is enabled when the multipass statement is given for a WriteField object. The Multipass object describes the
properties of the multi-pass to be performed.

Name Requirement Value
type Conditions Default Description

passes Required integer passes > 1 -
The number of write fields to use for multi-

passing.

shift_dist Required real
shift_dist >

0
- The distance to displace each write field.

rotation_angle Optional real - 0
The offset angle of the displacement

direction.

See example Multipass.yaml and MultipassDisabled.yaml.

The WriteMode object describes the writing mode, which itself determines the write order for write fields in lattices and subfields.

dir can be either "Horizontal" or "Vertical". In "Horizontal" mode, the write fields are written row by row. In "Vertical", mode
the write fields are written column by column.

type can be either "Scan" or "Snake". In "Scan" mode, all rows/columns are written starting from the beginning of the
row/column. In "Snake" mode, the rows/columns are written alternating from the beginning and the end of the row/column in a
snake-like pattern.

Name Requirement Value type Conditions Default Description
dir Optional "Horizontal" or "Vertical" - "Horizontal" The direction to scan in while writing.

type Optional "Scan" or "Snake" - "Snake" The mode for feeding to a new line.

Pitch

Statements

Multipass

Statements

WriteMode

Statements

10 / 30

See examples WriteModeHorizontalScan.yaml and WriteModeVerticalSnake.yaml.

When write field lattices are placed, the origin coordinates is given by the origin statement. However, what this position
corresponds to within the field or lattice itself, is decribed by the OriginMode object.

The lattice statement describes the placement of origin within the lattice. If it is "Center", the specified origin position
refers to the center of the lattice. If it is "LowerLeft", the specified origin position then refers to the location of the first write field
in the lattice, the origin mode of which is determined by the field statement.

Name Requirement Value type Conditions Default Description

lattice Required
"LowerLeft" or

"Center"
- "LowerLeft" The location of origin within the lattice.

field Required*
"LowerLeft" or

"Center"
- "Center"

The location of origin within the origin
write field.

*Must not be supplied when lattice = "Center".

See examples OriginModeLL_LL.yaml, OriginModeLL_C.yaml, and OriginModeC.yaml.

OriginMode

Statements

11 / 30

size: 500
dots: 1000000
marks:
 - x: -50
 y: -50
 - x: 350
 y: 350

Global statement examples

Marks.yaml

12 / 30

size: 500
dots: 1000000
local_marks:
 - x: -50
 y: 350
 - x: 350
 y: -50

LocalMarks.yaml

13 / 30

size: 500
dots: 1000000
fields:
 - origin:
 x: 0
 y: 0
 mode:
 lattice: LowerLeft
 field: LowerLeft
 size: 300
marks:
 - x: -50
 y: -50
 - x: 350
 y: 350
local_marks:
 - x: -50
 y: 350
 - x: 350
 y: -50

FullExample.yaml

14 / 30

size: 500
dots: 1000000
origin_mode:
 lattice: LowerLeft
 field: LowerLeft
fields:
 - origin:
 x: 0
 y: 0

WriteField examples

FieldSingle.yaml

15 / 30

size: 500
dots: 1000000
origin_mode:
 lattice: LowerLeft
 field: LowerLeft
fields:
 - origin:
 x: 0
 y: 0
 - origin:
 x: 500
 y: 500

FieldDouble.yaml

16 / 30

size: 500
dots: 1000000
origin_mode:
 lattice: LowerLeft
 field: LowerLeft
fields:
 - origin:
 x: 0
 y: 0
 columns: 2
 rows: 2

FieldArray.yaml

17 / 30

size: 500
dots: 1000000
origin_mode:
 lattice: LowerLeft
 field: LowerLeft
fields:
 - origin:
 x: 0
 y: 0
 columns: 2
 rows: 2
 lattice_vector_a:
 x: 200
 y: 200
 lattice_vector_b:
 x: 0
 y: 400

FieldVectors.yaml

18 / 30

size: 500
dots: 1000000
origin_mode:
 lattice: LowerLeft
 field: LowerLeft
fields:
 - origin:
 x: 0
 y: 0
 columns: 2
 rows: 2
 overlap: 0.1

FieldOverlap.yaml

19 / 30

size: 500
dots: 1000000
fields:
 - autofill:

AutoFill examples

AutofillDefault.yaml

20 / 30

size: 500
dots: 1000000
fields:
 - autofill:
 region:
 size: 100
 origin:
 x: 50
 y: 50
 mode: LowerLeft

AutofillRegion.yaml

21 / 30

size: 500
dots: 1000000
fields:
 - autofill:
 origin:
 x: 100
 y: 100
 mode:
 lattice: LowerLeft
 field: LowerLeft

AutofillOrigin.yaml

22 / 30

origin:
 x: 5.5
 y: 11.7
 mode:
 lattice: LowerLeft
 field: Center

size: 1500
origin:
 x: 1000
 y: 500
mode: Center

point:
 x: 6.2
 y: 1.6

point:
 x: 6
 y: 1

Various examples

Origin

Region

RealPoint

IntegerPoint

23 / 30

pitch:
 scan: 2
 feed: 3

Pitch

24 / 30

size: 500
dots: 1000000
multipass:
 passes: 3
 shift_dist: 100
 rotation_angle: -1.04719755119
fields:
 - origin:
 x: 0
 y: 0
 mode:
 lattice: LowerLeft
 field: LowerLeft

Multipass examples

Multipass.yaml

25 / 30

size: 500
dots: 1000000
multipass:
 passes: 3
 shift_dist: 100
 rotation_angle: -1.04719755119
fields:
 - origin:
 x: 0
 y: 0
 mode:
 lattice: LowerLeft
 field: LowerLeft
 multipass: false

MultipassDisabled.yaml

26 / 30

size: 500
dots: 1000000
write_mode:
 dir: Horizontal
 type: Scan
fields:
 - columns: 2
 rows: 2
 origin:
 x: 0
 y: 0

WriteMode examples

WriteModeHorizontalScan.yaml

27 / 30

size: 500
dots: 1000000
write_mode:
 dir: Vertical
 type: Snake
fields:
 - columns: 2
 rows: 2
 origin:
 x: 0
 y: 0

WriteModeVerticalSnake.yaml

28 / 30

size: 500
dots: 1000000
origin_mode:
 lattice: LowerLeft
 field: LowerLeft
fields:
 - size: 200
 columns: 2
 rows: 2
 origin:
 x: 0
 y: 0

OriginMode examples

OriginModeLL_LL.yaml

29 / 30

size: 500
dots: 1000000
origin_mode:
 lattice: LowerLeft
 field: Center
fields:
 - size: 200
 columns: 2
 rows: 2
 origin:
 x: 0
 y: 0

OriginModeLL_C.yaml

30 / 30

size: 500
dots: 1000000
origin_mode:
 lattice: Center
fields:
 - size: 200
 columns: 2
 rows: 2
 origin:
 x: 0
 y: 0

OriginModeC.yaml

